If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X^2-11X)=60
We move all terms to the left:
(X^2-11X)-(60)=0
We get rid of parentheses
X^2-11X-60=0
a = 1; b = -11; c = -60;
Δ = b2-4ac
Δ = -112-4·1·(-60)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-19}{2*1}=\frac{-8}{2} =-4 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+19}{2*1}=\frac{30}{2} =15 $
| 2(2g+7)-g=17 | | 5x=-3x+40 | | 4(2p-4)=5p | | 2(3t-5)+4t=30 | | 5(2y+3)-6y=20 | | 7(m+3)=3(2m-3) | | 2x^2+7=15× | | 5a+1=46 | | 5x+4x-15=30-6x | | 5x-13=-3(x-9) | | 2(x-3)+3x=13-4x | | -4-x=12 | | 4(x-4)+2x=14 | | 6x+9x=8 | | −2x+34=3x−26 | | 2x^2-4x+-1=0 | | 4t2+24t+36=0 | | 3x−26=−2x+34 | | 3(5x+4)=2(4x-8) | | 25+6y=13 | | 4(5y-2)=7(3y+2) | | .3x+12=36 | | 3x+12=36 {7,8,9,10} | | 3(2m+3)=7(m-3) | | (u^2-6u+2)+(-3u^2+7u+5)=0 | | x=24/(-3/4) | | 4(3c-2)=-5 | | 16+15y=-2 | | 2(4t-3)=3(t+3) | | 6(d-2)=2(2d-5) | | 2x=(x-33)+162 | | 2(x-3)=-2-2x |